ภาคีเมืองในผลิตภัณฑ์อาหารทะเล (พ.ศ. 2538 – 2548)

พิพัฒน์ นพคุณ กาญจนา พันธุ์ขาว และสุพิแยร์ แสงสาย
สำนักคุณภาพและความปลอดภัยอาหาร กรมวิทยาศาสตร์การแพทย์ ถนนดิลกนร ถนนรัฐวิถี 11000

บทคัดย่อ กรมวิทยาศาสตร์การแพทย์ โดยสำนักคุณภาพและความปลอดภัยอาหาร ได้ตรวจสอบความรุนแรงของภาคีเมืองในผลิตภัณฑ์อาหารทะเล ระหว่างปี พ.ศ. 2538 – 2548 จำนวน 3,759 ด้วย ประกอบด้วย ตลาดส่วนต่างๆ yalatiriyo อาหารทะเลผสม ปลาที่แยกกลุ่ม ปลาที่แยกการผลิต ปลาที่แยกตลาด และกุ้งแช่แข็ง จำนวน 516, 2,091, 413, 103, 137, 122 และ 377 ด้วยอัตรา ตามลำดับ โดยใช้เทคนิค dry-ashing และวิเคราะห์ปริมาณด้วย Flame-Atomic Absorption Spectrophotometer ซึ่งต่างๆสูตรที่ครบถ้วนได้ (Limit of Quantitation, LOQ) 0.01 มิลลิกรัมต่อกิโลกรัม พบการปรับเปลี่ยนของภาคีเมืองในผลิตภัณฑ์อาหารทะเลคิดเป็น -0.01 - 0.86 (ปลาแช่แข็ง), -0.01 - 0.32 (ปลากระป๋อง), -0.01 - 1.80 (อาหารทะเลผสม), -0.01 - 2.47 (ปลาที่แยกกลุ่ม), -0.01 - 3.17 (ปลาที่แยกการผลิต), -0.01 - 5.15 (ปลาที่แยกตลาด) และ -0.01 - 0.71 (กุ้งแช่แข็ง) มิลลิกรัมต่อกิโลกรัม ปริมาณสารสิ้นสุดที่พบคิดเป็น 0.02 ± 0.05, 0.03 ± 0.02, 0.18 ± 0.22, 0.42 ± 0.45, 0.58 ± 0.76, 0.33 ± 0.56 และ 0.02 ± 0.05 มิลลิกรัมต่อกิโลกรัม ตามลำดับ ซึ่งอยู่ในเกณฑ์ปลอดภัยต่อผู้บริโภค เมื่อเปรียบเทียบปริมาณภาคีเมืองที่ดนตรีให้_CONTOH ต่อคนดับวัน (โดยต้นแบบน้ำมันคนที่รักษา 60 กิโลกรัม) ที่ข้อมูลที่ Joint FAO/WHO Expert Committee on Food Additives (JECCFA) ซึ่งกำหนดปริมาณภาคีเมืองที่ร่างกายได้รับต่อสัปดาห์ (Provisional Tolerable Weekly Intake, PTWI) 7 มิลลิกรัมต่อกิโลกรัมต่อสัปดาห์

บทนำ
ภาคีเมืองเป็นสารที่ไม่ค่อยพบตามธรรมชาติ มักจะอยู่ในรูปสารประกอบในกับกามะยันเป็นภาคีเมืองชื่อใหม่ มีสีเหลือง โดยทั่วไปภาคีเมืองจะพบในเนื้อสัตว์เลี้ยงสัตว์ที่ได้หลากหลายจากการทำเหมืองและผลิตภัณฑ์ โดยเป็นน้ำหนักจากการทำเหมืองในเครื่องผลิตภาคีเมือง อุปกรณ์ไฟฟ้า รวมถึงเป็นแหล่งผลิต การทำสังเคราะห์ ระยะทางการผลิตภาคีเมืองในโรงงานอุตสาหกรรมจะมีผลต่อภาคีเมืองหรือน้ำเสียซึ่งมีภาคีเมืองในเนื้อสัตว์ หากผู้ผลิตไม่มีวิธีที่จะทำการกำจัดหรือจัดการของเสียเหล่านี้ จะทำให้สารดังกล่าวในเนื้อสัตว์แผลงผลและแหล่งน้ำ เกิดสารสะสมในสัตว์ที่อาศัยบริเวณน้ำ เมื่อคนบริโภคด้ว้นนี้ภาคีเมืองจะเข้าสู่ร่างกายตามทางอาหาร ภาคีเมืองที่เป็นน้ำมันมากับอาหารจะถูกกระบวนการย่อยเสียแล้งอกิดซึ่งผ่านกระเพาะอาหาร ส่วนใหญ่จะสะสมอยู่ในและใครมากกว่าส่วนอื่นๆ ของร่างกาย(1) หากปริมาณการสะสมเพิ่มขึ้นจะทำให้การทำงานปกติหรือไม่ได้ (renal dysfunction) เนื่องจากเวลา การถูกเจ้าลูกของภาคีเมืองในร่างกาย (half-life) นานประมาณ 17 ปี(2) และถูกขับออกจากร่างกายช้ามาก นอกจากนี้ยังทำให้เกิดโรคความร้อน โลหิตสูง โรคไตจากเรื้อรังปวดตามกระดูกสันหลัง เขม่า และอาการเสียชีวิตได้ โรคที่เกิดจากพิษของ

Accepted for publication, 14 February 2007
 ecl. 2538 - 2548 จำนวนตัวเลือก 3,759 ด้วยถึงจำแนกเป็นแบบจำลอง จากเทคนิคการวิเคราะห์ทางเคมี (ฟรุคติน, น้ำตาล) จำนวน 516, 2,091, 413, 103, 137, 122 และ 377 ด้วยถึง
ตามล่าดับ

สารเคมีและสารเคมี
สารเคมี : สารเคมีที่มีความเข้มข้น 1,000 เครื่องมือต่อ
มิลลิลิตร ของ Perkin-Elmer

สารเคมี : สารเคมีที่มีความเข้มข้น 1,000 มิลลิลิตร ของ Perkin-Elmer

Hydrochloric acid, Nitric acid, และ Double Distillation

เครื่องมือสารเคมีและสารเคมี
เครื่องมือสารเคมีและสารเคมีที่มีความเข้มข้น 0.25, 0.50, 0.75, และ 1.00 มิลลิลิตร

มิลลิลิตร : ปริมาณต่อ 12.50, 50.00, 75.00, 100.00

ไมโครกรัม ของสารเคมีสารเคมีตามความเข้มข้น 1,000 มิลลิลิตร ที่ใน volumetric flask ขนาด 50 มิลลิลิตร ปรับปริมาตร
แต่ละสารเคมีที่ต่อ 0.1 มิลลิลิตร การต้มให้เป็น 50 มิลลิลิตร

การเตรียมสารเคมีและสารเคมี
สารเคมีและสารเคมีที่มีความเข้มข้น 0.1 มิลลิลิตร : น้ำกรดออกไซคลอไรติค จำนวน 7 มิลลิลิตร

เครื่องมือสารเคมี
เครื่องมือสารเคมีที่ต่อ 0.1 มิลลิลิตร : น้ำกรด

เครื่องมือสารเคมีที่ต่อ 0.1 มิลลิลิตร : น้ำกรด
เครื่องมือและอุปกรณ์
Atomic Absorption Spectrophotometer Perkin–Elmer 3030 B, Hallow Cathode Lamp
Cadmium
เดัก ฉลุกภูมิสูงของบริษัท Elite, Hot Plate ของบริษัท Schott, ย่างน้ำร้อนของบริษัท Memmert
เครื่องแก้ว และอุปกรณ์ทุกชนิดที่ใช้ทำการวิเคราะห์ต้องเช่นเดิม 20% จุดในตรงและน้ำกลับ เพื่อกำจัดการเป็นไปของโลหะต่าง ๆ
การเตรียมตัวอย่าง
ที่ตามวิธี AOAC ปี 1999 chapter 35. No.937.07, p.864.(4) โดยแยกตัวอย่างเฉพาะส่วนที่ปริมาณไม่ได้ เช่น กระสุน เกลือปลา ลาดี ที่นำไปนำส่วนที่ปริมาณได้ประมาณ 300 กรัมบดให้ละเอียดใส่กล่องพลาสติก polyethylene ที่มีฝาปิด
วิธีวิเคราะห์
ที่ตามวิธี AOAC ปี 2000 chapter 9. No.999.11, p.19 – 22.(5) โดยขั้นตอนอย่างที่บัดแล้ว 10 กรัม ใน dish ระบายน้ำผ่านสำนักจราจญาน้ำร้อน นำแทนบน hot plate โดยค่อย ๆ เพิ่มความร้อนแล้วแกดต่อไปจนหมดครั้ง แล้วนำมาเข้าเด็กฉลุกภูมิสูง(450 องศาเซลเซียส)เป็นเวลา 8 ชั่วโมงที่ไฟอ่อนนำม่าละลายด้วย 5 มิลลิลิตร กรดไนโตรเรท 6 โมลาร์ นำไปประยุกต์อย่างนั้นร้อนจนแห้งละลายด้วย 20 มิลลิลิตร กรดในตริก 0.1 โมลาร์ ตั้งเวลาไว้ 1–2 ชั่วโมง รองรับจ่ายกระดาษกรง ปรับปริมาตรครบ 25 มิลลิลิตร ด้วยกรดในตริก 0.1 โมลาร์ เติมในกระเปาะพลาสติก นำมาตรวจวิเคราะห์ปริมาณแคดมียมด้วยเครื่อง Flame Atomic Absorption Spectrophotometer ที่ความยาวคลื่น 228.8 นาโนเมตร นำมานำ้หมาย หาความเข้มข้นโดยใช้สูตรของการคำนวณดังนี้
ความเข้มข้นของแคดมียม (มิลลิกรัมต่อโคลัม) = ความเข้มข้นของแคดมียมที่คำนวณได้ × ปริมาตรสูตรท้าย (มิลลิลิตร)/น้ำหนักตัวอย่าง (กรัม)
วิธีวิเคราะห์นี้มีค่าต่ำสุดที่หาปริมาณได้ (Limit of Quantitation, LOQ) เท่ากับ 0.01 มิลลิกรัมต่อกิโลกรัม เมื่อท้า 6 ชั่วได้รับจะของ
การกลับคืน (%recovery) เท่ากับ 82.00 - 107.25% ช่วงความเข้มข้น 0.01 - 1.00 มิลลิกรัมต่อกิโลกรัม
การสร้างมาตรฐาน
นำสารละลายมาตรฐานที่ความเข้มข้น 0.25, 0.50, 0.75 และ 1.00 มิลลิกรัมต่อมิลลิลิตร วัดด้วยเครื่องของมิกโรกลับซ่อม ผลค่า-
โครโฟมิเตอร์ที่ความยาวคลื่น 228.8 นาโนเมตร และสร้างมาตรฐาน
การควบคุมคุณภาพของผลการวิเคราะห์
ทดสอบประสิทธิภาพของวิธีวิเคราะห์ (% recovery) โดยการเดิมสารละลายมาตรฐาน
แคดมียมในตัวอย่าง ปลา ปลาหมึก และกุ้ง ที่ความเข้มข้น 0.10, 0.50 และ 1.00 มิลลิกรัม
ต่อกิโลกรัม ตามลำดับ ค่าที่ได้ต้องอยู่ในช่วง 80 - 120% และทดสอบความเที่ยง (precision)
โดยการวิเคราะห์ซ้ำ (duplicate analysis) ร้อยละ ค่าเบี้ยแนบมาตรฐานลัมพ์พื้นที่ไม่เกิน (%RSD)
15% และดำเนินการที่ตุ่นรู้ที่ทำการวิเคราะห์

212
ผล

ผลการตรวจวิเคราะห์แคลเซียมในผลิตภัณฑ์อาหารทะเล 3,759 ตัวอย่าง พบว่ามีแคลเซียมตกเกินเกณฑ์กำหนดของ EC 75 ตัวอย่าง คิดเป็น 1.99% ของปริมาณที่ตรวจทั้งหมด จำแนกเป็น 7 ชุดต่อ ปริมาณแคลเซียม อาหารทะเล ปริมาณแคลเซียมกลับไปยังข้อมูลผลิตภัณฑ์อาหารทะเล ซึ่งถูกแช่แข็ง พบว่ามีแคลเซียมตกเกินเกณฑ์ดังนี้ <0.01 - 0.86, <0.01 - 0.32, <0.01 - 1.80, <0.01 - 2.47, <0.01 - 3.17, <0.01 - 5.15 และ <0.01 - 0.71 มิลลิกรัมต่อกิโลกรัม และมีปริมาณแคลเซียมตกเกินเกณฑ์ 0.02 ± 0.05, 0.03 ± 0.02, 0.18 ± 0.22, 0.42 ± 0.45, 0.58 ± 0.76, 0.33 ± 0.58 และ 0.02 ± 0.05 มิลลิกรัมต่อกิโลกรัม ตามลำดับ ผลิตภัณฑ์นี้มีปริมาณแคลเซียมสูงสุด 5.15 มิลลิกรัมต่อกิโลกรัม และมีปริมาณกรดอ่อนมีปริมาณแคลเซียมสูงสุด 0.58 ± 0.76 มิลลิกรัมต่อกิโลกรัม (ตารางที่ 1) สำหรับอาหารทะเล ปริมาณแคลเซียมกลับไปยังข้อมูลผลิตภัณฑ์อาหารทะเลทั้งหมด และปริมาณที่ยังคงอยู่ต่อสภาวะวิเคราะห์ทั้งหมดของพ.ศ. 2543 เป็นต้นมา

ตัวอย่างที่มีปริมาณแคลเซียมตกเกินเกณฑ์มาตรฐาน ได้แก่ ปลาแช่แข็ง 9 ตัวอย่าง (1.94%), ปลากระปอง 19 ตัวอย่าง (0.91%), ปลาหิมะกล้วย 10 ตัวอย่าง (9.71%), ปลาทูกล้วย 28 ตัวอย่าง (20.43%) และปลาทูกล้วย 9 ตัวอย่าง (7.30%) (ตารางที่ 2)
ตารางที่ 1 ปริมาณแคดเมียมในผลิตภัณฑ์อาหารทะเลที่ตรวจจัดตรวจระหว่างปี พ.ศ. 2538 – 2548

<table>
<thead>
<tr>
<th>ชนิดด้วอย่าง</th>
<th>จำนวนตัวอย่าง</th>
<th>ปริมาณแคดเมียม (มก./กก.)</th>
<th>ค่าต่าสุด - ค่าสูงสุด</th>
<th>ค่าเฉลี่ย ± ค่าน้ำเบี้ยแปลงมาตรฐาน</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปลาแซลมอน</td>
<td>516</td>
<td><0.01 - 0.86</td>
<td>0.02 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>ปลากระปุก</td>
<td>2,091</td>
<td><0.01 - 0.32</td>
<td>0.03 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>อาหารทะเลรวม*</td>
<td>413</td>
<td><0.01 - 1.80</td>
<td>0.18 ± 0.22</td>
<td></td>
</tr>
<tr>
<td>ปลามิกกกล้วย</td>
<td>103</td>
<td><0.01 - 2.47</td>
<td>0.42 ± 0.45</td>
<td></td>
</tr>
<tr>
<td>ปลามิกกระดอง</td>
<td>137</td>
<td><0.01 - 3.17</td>
<td>0.58 ± 0.76</td>
<td></td>
</tr>
<tr>
<td>ปลามิกสาย</td>
<td>122</td>
<td><0.01 - 5.15</td>
<td>0.33 ± 0.58</td>
<td></td>
</tr>
<tr>
<td>ปลาแซลมอน</td>
<td>377</td>
<td><0.01 - 0.71</td>
<td>0.02 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>รวม</td>
<td>3,759</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*อาหารทะเลรวม ประกอบด้วย ปลา ปลา และปลามิก

ตารางที่ 2 จำนวนตัวอย่างผลิตภัณฑ์อาหารทะเลที่เกิน Commission Regulation (EC) No 466/2001 ระหว่างปี พ.ศ. 2538 – 2548

<table>
<thead>
<tr>
<th>ชนิดด้วอย่าง</th>
<th>เกณฑ์กำหนด EC (มก./กก.)</th>
<th>จำนวนตัวอย่างที่เกินมาตรฐาน (ร้อยละ)</th>
<th>คิดเป็นร้อยละของตัวอย่างทั้งหมด</th>
</tr>
</thead>
<tbody>
<tr>
<td>ปลาแซลมอน</td>
<td>0.10</td>
<td>9 (1.74)</td>
<td>0.24</td>
</tr>
<tr>
<td>ปลากระปุก</td>
<td>0.10</td>
<td>19 (0.91)</td>
<td>0.50</td>
</tr>
<tr>
<td>อาหารทะเลรวม</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ปลามิกกล้วย</td>
<td>1.00</td>
<td>10 (9.71)</td>
<td>0.27</td>
</tr>
<tr>
<td>ปลามิกกระดอง</td>
<td>1.00</td>
<td>28 (20.43)</td>
<td>0.74</td>
</tr>
<tr>
<td>ปลามิกสาย</td>
<td>1.00</td>
<td>9 (7.30)</td>
<td>0.24</td>
</tr>
<tr>
<td>ปลาแซลมอน</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>รวม</td>
<td>75 ตัวอย่าง</td>
<td>1.99</td>
<td></td>
</tr>
</tbody>
</table>
วิจารณ์

จากการงานในปี พ.ศ. 2538 การศึกษาปริมาณแคดMIเมื่อในกลุ่มต่างๆมีค่าเฉลี่ย 0.23 ± 0.05 มิลลิกรัมต่อคิลิลิตร (7) หากน่าจะเปรียบเพื่อกับปริมาณแคดMIอยู่ 0.02 ± 0.05 มิลลิกรัมต่อคิลิลิตรของกลุ่มอื่นๆในการศึกษาพบว่ามีปริมาณลดลง

tัวอย่างลำไยมีปริมาณแคดMIสูงกว่าอาหารทะเลประเภทอื่นๆ เนื่องจากธรรมชาติของการหาตกบริเวณผิวดินในทะเล การสะสมแคดMIในอาหารทะเลสะสมกว่าในทะเลที่เป็นสิ่งมีน้ำมันมากกว่าส่วน เชื่อมความสัมพันธ์ในการกินเชื้อและตับในอาหารกลีกิจ จึงควรหลักเสิร์ชและตัดทันต่ออวัยวะส่วนนี้

จากข้อมูลในปี พ.ศ. 2532 – 2537 ปริมาณค่าเฉลี่ยของแคดMIในอาหารทะเลขึ้นไปเก่าปริมาณกล้าปลามีกระจายเป็นเม็ดและอาหารทะเลพบปริมาณค่าเฉลี่ยแคดMI 0.37, 1.05, 1.04 และ 0.61 มิลลิกรัมต่อคิลิลิตรตามลำดับ (8) เมื่อเปรียบเทียบกับค่าเฉลี่ยของแคดMIที่ทำการศึกษาในครั้งนี้ (ตารางที่ 1)พบว่าลดลง ยกเว้นปริมาณกล้าปลามีการลดลงจากค่าเฉลี่ยเฉพาะเมื่อเทียบกับที่สามารถทำได้จากข้อมูลที่ใช้งานได้ว่าผู้ผลิตได้ความลักษณะต่อการคัดเลือกแหล่งวัตถุดิบ การตัดแต่งผลิตภัณฑ์ในการลดความเสี่ยงของผู้รับโภชนาการส่งออก รวมถึงผู้เสียชีวิตทางการรับ นอกจากนี้ยังควรระลึกว่าการที่มีการจัดการส่งออกช่วงเวลาที่จะส่งผลกระทบต่อผลิตภัณฑ์

จากการสังเกตจาก Dietary survey โดยการแบ่งกลุ่มอาหารเพื่อการศึกษาสำหรับวัตถุดิบต่อคืนต่อวันพบว่าในไทยปริมาณแคดMIอยู่ 34.8 กรัมต่อคนต่อวัน (9) เมื่อเทียบกับค่าเฉลี่ยที่ผ่านไปได้รับต่อคืนต่อวันในผลิตภัณฑ์อาหารทะเลและผลิตภัณฑ์อาหารกระเพาะปลาอาหารทะเล ปริมาณกล้าปลามีกล้าปลามีผลกระทบ ปริมาณกล้าปลามีและผู้เสียชีวิตจะเท่ากัน 0.0007, 0.0010, 0.0063, 0.0146, 0.0202, 0.0115 และ 0.0007 มิลลิกรัมต่อคนต่อวัน (ซึ่งคิดนับหนักตัว 60 กิโลกรัม) ตามลำดับ

สรุป

ปริมาณแคดMIในผลิตภัณฑ์อาหารทะเลซึ่งทำการสำรวจระหว่างปี พ.ศ. 2538 – 2548พบว่าผู้เสียชีวิตต่อคืนต่อวันอย่างไรก็ตามห่างจากข้อมูลและแนวคิดควรให้ความสนใจกับสิ่งแวดล้อมและการผลิตสินค้า โดยเฉพาะอาหารทะเลและต้องตระหนักถึงคัดว้างสรรพสิ่ง เนื่องจากแนวโน้มของการกินเป็นอย่างมากเสมอได้เกิดความมั่นใจต่อผู้บริโภคและสนับสนุนการส่งออกให้มีประสิทธิภาพต่อไป

กิจกรรมประกาศ

ขอขอบคุณ คุณเจ้าหน้าที่ แจ้งส่วนผู้อำนวยการสำนักคุณภาพและความปลอดภัยอาหาร กรมวิชาการสารสนเทศ ที่กรุณาให้คำแนะนำและแก้ไขข้อบกพร่องต่างๆ

เอกสารอ้างอิง

Pipat Noppakun Kanchana Phantuvech and Supat Sangsuay
Bureau of Quality and Safety of Food, Department of Medical Sciences, Tiwanond Road, Nonthaburi 11000, Thailand.

ABSTRACT Cadmium is a toxic heavy metal which contaminated in the environment. The cadmium content in seafood was analysed by Bureau of Quality and Safety of Food during 1995 to 2005. The 3759 samples consist of 516 frozen fish, 2,091 canned fish, 413 mix seafood, 103 squid, 137 cuttlefish, 122 octopus and 377 frozen shrimp. The samples were analysed by dry-ashing technique couple with Flame-Atomic Absorption Spectrophotometer. The limit of quantitation (LOQ) was 0.01 mg/kg. The results showed that contaminated cadmium in seafood were <0.01 - 0.86 (frozen fish), <0.01 - 0.32 (canned fish), <0.01 - 1.80 (mix seafood), <0.01 - 2.47 (squid), <0.01 - 3.17 (cuttlefish), <0.01 - 5.15 (octopus) and <0.01 - 0.71 (frozen shrimp). Average concentrations were 0.02 ± 0.05, 0.03 ± 0.02, 0.18 ± 0.22, 0.42 ± 0.45, 0.58 ± 0.76, 0.33 ± 0.58 and 0.02 ± 0.05 mg/kg respectively. The value was safe for human consumption when compare with Thai cadmium intake/person/day (60 kg body weight). It was also comply with limit of Joint FAO/WHO Expert Committee on Food Additives (JECFA) which recommended cadmium provisional tolerable weekly intake (PTWI) 7 μg/kg/week.

Key words : Cadmium, Dry-ashing, seafood products, contaminant